Co jest najtrudniejsze na maturze z matematyki? Na podstawie przeprowadzonych wcześniej testów diagnostycznych Centralna Komisja Egzaminacyjna opracowała raport, w którym m.in. pokazuje sześć najtrudniejszych dla zdających zagadnień (w tym np. geometria, kombinatoryka, funkcja kwadratowa).
Strony z tym zadaniem Matura 2011 sierpień Różne zadania z trygonometrii Matura podstawowa z matematyki - kurs - trygonometria Matura podstawowa - kurs - część 41 - zadania Sąsiednie zadania
Matura 2017 - matematyka podstawowa [ARKUSZ CKE, ZADANIA, ROZWIĄZANIA] równania, mało trygonometrii, funkcji, logarytmów i ciągi. MATURA 2017: ZADANIA I ROZWIĄZANIA Z MATEMATYKI
Wzór: Jedynka trygonometryczna. Dla każdego kąta prawdziwy jest wzór: Dzięki temu związkowi możemy w łatwy sposób wyliczyć wartość funkcji , gdy mamy daną wartość lub odwrotnie. Przykład 1. Dane jest , znajdź wartość funkcji wiedząc, że jest kątem ostrym. Korzystając z wzoru na jedynkę trygonometryczną mamy. zatem.
ma długość 8 i tworzy z dłuższa podstawą kąt o mierze . Zadanie 14. Przeciwprostokątna trójkąta prostokątnego jest o 4 dłuższa od dłuższej przyprostokątnej. Sinus mniejszego kąta ostrego tego trójkąta wynosi . Wyznacz obwód tego trójkąta. Zadanie 15. Dany jest kąt . Wiedząc, że , wyznacz liczbę .
Matura 2013 styczeń Różne zadania z trygonometrii Matura podstawowa z matematyki - kurs - trygonometria Matura podstawowa - kurs - część 41 - zadania Sąsiednie zadania Zadanie 87 Zadanie 88
Zadanie 2 (0-1) - matura poziom podstawowy maj 2023, zadanie 18. 2023. W kartezjańskim układzie współrzędnych (x, y) zaznaczono kąt α o wierzchołku w punkcie O= (0, 0). Jedno z ramion tego kąta pokrywa się z dodatnią półosią Ox, a drugie przechodzi przez punkt P = (−3, 1) (zobacz rysunek). Dokończ zdanie.
Pole równoległoboku. Oznaczenia przyjmujemy jak na rysunku poniżej: Wzór 1: Pole równoległoboku o bokach , wysokości i przekątnych wyraża się wzorami. Iloczyn długości boku i długości wysokości opadającej na ten bok. Wzór 2: Iloczyn długości boków i sinusa kąta ostrego równoległoboku (lub prostego, jeżeli rozpatrujemy
Funkcje trygonometryczne w zadanich szkolnych - Vademecum maturalne i egzaminacyjne z matematyki, Wartość wyrażenia, 1013 Największy internetowy zbiór zadań z matematyki Baza zawiera: 19752 zadania, 1833 zestawy, 35 poradników
Matura 2011 listopad Różne zadania z trygonometrii Zadania dowodowe Matura podstawowa - kurs - część 41 - zadania. Sąsiednie zadania. Zadanie 458 Zadanie 459.
uxRHwUR. Szybka nawigacja do zadania numer: 10 20 30 40 50 60 70 .W tym nagraniu wideo omawiam typowe zadanie z trygonometrii, w którym mamy daną wartość jednej funkcji trygonometrycznej, a musimy policzyć wartości wszystkich pozostałych funkcji tego typu można rozwiązywać na kilka różnych sposobów - np. korzystając z twierdzenia Pitagorasa, albo jedynki trygonometrycznej. Plusy i minusy każdej z tych metod omawiam w tym nagraniu nagrania: 13 \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{4}\). Wtedy \(\sin \alpha \) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{3}}{4} \) C.\( \frac{\sqrt{7}}{4} \) D.\( \frac{7}{16} \) CKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{3}{7}\). Wtedy A.\( \sin \alpha =\frac{2\sqrt{10}}{7} \) B.\( \sin \alpha =\frac{\sqrt{10}}{7} \) C.\( \sin \alpha =\frac{4}{7} \) D.\( \sin \alpha =\frac{3}{4} \) ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{7}\). Wówczas cosinus tego kąta jest równy: A.\( \frac{4}{7} \) B.\( \frac{7}{4} \) C.\( \frac{2\sqrt{7}}{7} \) D.\( \frac{2\sqrt{10}}{7} \) DKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \(\alpha\) jest ostry i \(\sin{\alpha}=\frac{4}{5}\). Wtedy \(\cos{\alpha }\) jest równy A.\( \frac{1}{5} \) B.\( \frac{2}{5} \) C.\( \frac{3}{5} \) D.\( \frac{4}{5} \) CKąt \(\alpha\) jest ostry i \(\cos \alpha = \frac{3}{4}\). Wtedy \(\sin \alpha\) jest równy A.\( \frac{1}{4} \) B.\( \frac{\sqrt{7}}{4} \) C.\( \frac{7}{16} \) D.\( \frac{\sqrt{7}}{16} \) BKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{5}{13}\). Wtedy A.\( \sin \alpha =\frac{12}{13} \) oraz \(\operatorname{tg} \alpha =\frac{12}{5}\) B.\( \sin \alpha =\frac{12}{13} \) oraz \(\operatorname{tg} \alpha =\frac{5}{12}\) C.\( \sin \alpha =\frac{12}{5} \) oraz \(\operatorname{tg} \alpha =\frac{12}{13}\) D.\( \sin \alpha =\frac{5}{12} \) oraz \(\operatorname{tg} \alpha =\frac{12}{13}\) AKąt \(\alpha \) jest ostry i \(\cos \alpha =\frac{4}{5}\). Oblicz \(\sin \alpha \) i \(\operatorname{tg} \alpha \).\(\sin \alpha =\frac{3}{5}\), \(\operatorname{tg} \alpha =\frac{3}{4}\)Kąt \(\alpha\) jest ostry i \(\sin\alpha =\frac{\sqrt{2}}{2} \). Wtedy \(\operatorname{tg}\alpha\) jest równy A.\( \frac{\sqrt{2}}{2} \) B.\( \frac{2}{\sqrt{2}} \) C.\( \sqrt{2} \) D.\( 1 \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\frac{2}{5}\). Wówczas A.\( \cos \alpha =\sin \alpha \) B.\( \cos \alpha >\sin \alpha \) C.\( \cos \alpha \lt \sin \alpha \) D.\( \cos \alpha =1-\sin \alpha \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}6\). Wówczas A.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}4\) B.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =1{,}5\) C.\( \cos \alpha =0{,}8 \) i \(\operatorname{tg} \alpha =0{,}75\) D.\( \cos \alpha =0{,}4 \) i \(\operatorname{tg} \alpha =0{,}75\) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{7}{13}\). Wtedy \(\operatorname{tg} \alpha \) jest równy A.\( \frac{7}{6} \) B.\( \frac{7\cdot 13}{120} \) C.\( \frac{7}{\sqrt{120}} \) D.\( \frac{7}{13\sqrt{120}} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{12}{5}\). Wówczas \(\cos \alpha \) jest równy: A.\( \frac{5}{12} \) B.\( \frac{5}{13} \) C.\( \frac{10}{13} \) D.\( \frac{12}{13} \) BKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{5}{12}\). Oblicz \(\cos \alpha \).\(\cos \alpha =\frac{12}{13}\)Przyprostokątne trójkąta prostokątnego mają długości \(3\) i \(9\). Sinus najmniejszego kąta tego trójkąta jest równy: A.\( \frac{3\sqrt{10}}{10} \) B.\( \frac{1}{3} \) C.\( \frac{\sqrt{10}}{10} \) D.\( \frac{\sqrt{10}}{30} \) CKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =2\). Oblicz \(\frac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\).\(\frac{1}{3}\)Przyprostokątne trójkąta prostokątnego mają długości \(8\) i \(6\). Sinus większego z kątów ostrych tego trójkąta jest równy A.\( \frac{3}{5} \) B.\( \frac{3}{4} \) C.\( \frac{4}{5} \) D.\( \frac{4}{3} \) CW trójkącie równoramiennym wysokość jest dwa razy dłuższa od podstawy. Wynika stąd, że sinus kąta przy podstawie wynosi: A.\( \frac{\sqrt{17}}{17} \) B.\( \frac{\sqrt{5}}{5} \) C.\( \frac{4\sqrt{17}}{17} \) D.\( \frac{1}{17} \) CLiczba \(\sin 60^\circ +\cos 60^\circ \) jest równa A.\( 1 \) B.\( -\frac{\sqrt{3}}{2} \) C.\( \frac{\sqrt{3}+1}{2} \) D.\( \frac{2\sqrt{3}-3}{6} \) CLiczba \( \operatorname{tg} 30^\circ -\sin 30^\circ \) jest równa A.\(\sqrt{3}-1 \) B.\(-\frac{\sqrt{3}}{6} \) C.\(\frac{\sqrt{3}-1}{6} \) D.\(\frac{2\sqrt{3}-3}{6} \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{3}{4}\). Wartość wyrażenia \(2-\cos ^2\alpha \) jest równa A.\( \frac{25}{16} \) B.\( \frac{3}{2} \) C.\( \frac{17}{16} \) D.\( \frac{31}{16} \) AKąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =1\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) CKąt \(\alpha \) jest ostry i \(\sin\alpha = 0{,}75\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry oraz \(\sin \alpha =\cos 47^\circ \). Wtedy miara kąta \(\alpha \) jest równa. A.\( 6^\circ \) B.\( 33^\circ \) C.\( 47^\circ \) D.\( 43^\circ \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AW trójkącie prostokątnym \( ABC \) odcinek \( AB \) jest przeciwprostokątną i \( |AB|=13 \) oraz \( |BC|=12 \) . Wówczas sinus kąta \( ABC \) jest równy. A.\(\frac{12}{13} \) B.\(\frac{5}{13} \) C.\(\frac{5}{12} \) D.\(\frac{13}{12} \) BKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Wartość wyrażenia \(\cos^2\alpha -2\) jest równa A.\( -\frac{7}{4} \) B.\( -\frac{1}{4} \) C.\( \frac{1}{2} \) D.\( \frac{\sqrt{3}}{2} \) AKąt \(\alpha \) jest ostry i \(\cos \alpha =0{,}9\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) AKąt \(\alpha \) jest ostry i \(\sin \alpha =0{,}8\). Wówczas A.\( \alpha \lt 30^\circ \) B.\( \alpha =30^\circ \) C.\( \alpha =45^\circ \) D.\( \alpha >45^\circ \) DKąt \(\alpha \) jest ostry i \(\sin \alpha = \cos \alpha \). Wówczas A.\( \alpha =30^\circ \) B.\( \alpha =45^\circ \) C.\( \alpha =60^\circ \) D.\( \alpha =90^\circ \) BWartość wyrażenia \(\sin^{2} 23^\circ +\sin^{2} 67^\circ \) jest równa: A.\( 2\sin^{2} 23^\circ \) B.\( 2\sin^{2} 67^\circ \) C.\( 1 \) D.\( 0 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{2}\). Oblicz wartość wyrażenia \(\sin^2\alpha - 3\cos^2\alpha \).\(0\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3 + 2\operatorname{tg}^2\alpha \).\(3\frac{2}{15}\)Oblicz wartość wyrażenia \(\operatorname{tg}^2\alpha -3\cos ^2\alpha \), jeżeli \(\sin \alpha =\frac{\sqrt{3}}{2}\) i \(\alpha \) jest kątem ostrym.\(2\frac{1}{4}\)Kąty ostre \(\alpha \) i \(\beta \) trójkąta prostokątnego spełniają warunek \(\sin^{2} \alpha +\sin^{2}\beta +\operatorname{tg}^{2}\alpha =4\) . Wyznacz miarę kąta \(\alpha \).\(\alpha =60^\circ \)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)W trójkącie prostokątnym przyprostokątne mają długość \(a\) i \(b\), zaś naprzeciw boku \(a\) znajduje się kąt ostry \(\alpha\). Wykaż, że jeśli \(\operatorname{tg} \alpha = 2,\) to:\[\frac{(a+b)\cdot b}{a^2-b^2}=1\]Uzasadnij, że jeżeli \(\alpha\) jest kątem ostrym, to \(\sin^4\alpha + \cos^2\alpha = \sin^2\alpha + \cos^4\alpha\).Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)W trójkącie prostokątnym jedna z przyprostokątnych ma długość \(a\). Kąt ostry przy tym boku ma miarę \(\alpha \). Wykaż, że \(\sin \alpha +\cos \alpha >1\).Kąt \(\alpha \) jest ostry i \(\frac{\sin \alpha }{\cos \alpha }+\frac{\cos \alpha }{\sin \alpha }=2\). Oblicz wartość wyrażenia \(\cos \alpha \cdot \sin \alpha \).\(\frac{1}{2}\)Rozwiąż równanie \(\cos 2x + \cos x + 1 = 0\) dla \(x\in \langle 0,2\pi \rangle\).\(x=\frac{\pi }{2}\) lub \(x=\frac{3\pi }{2}\) lub \(x=\frac{2\pi }{3}\) lub \(x=\frac{4\pi }{3}\)Rozwiąż równanie \(\cos2x + 2 = 3\cos x\).\(x=\frac{\pi }{3}+2k\pi \) lub \(x=-\frac{\pi }{3}+2k\pi \) lub \(x=2k\pi \) gdzie \(k\in \mathbb{Z} \)Podstawą ostrosłupa \(ABCDS\) jest romb \(ABCD\) o boku długości \(4\). Kąt \(ABC\) rombu ma miarę \(120^\circ \) oraz \(|AS|=|CS|=10\) i \(|BS|=|DS|\). Oblicz sinus kąta nachylenia krawędzi \(BS\) do płaszczyzny podstawy ostrosłupa.\(\sin \alpha =\sqrt{\frac{22}{23}}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{\sqrt{3}}{3}\). Wtedy wartość wyrażenia \(2cos^2\alpha -1\) jest równa A.\( 0 \) B.\( \frac{1}{3} \) C.\( \frac{5}{9} \) D.\( 1 \) BW trójkącie prostokątnym długość jednej z przyprostokątnych jest równa \(7\), zaś długość przeciwprostokątnej jest równa \(8\). Zatem tangens mniejszego kąta ostrego w tym trójkącie jest równy: A.\( \frac{15}{7} \) B.\( \frac{8}{15} \) C.\( \frac{\sqrt{15}}{7} \) D.\( \frac{7\sqrt{15}}{15} \) CMaszt telekomunikacyjny rzuca cień, który jest \(2\) razy krótszy niż wysokość masztu. Oblicz cosinus kąta, pod jakim padają promienie słoneczne.\(\cos \alpha =\frac{\sqrt{5}}{5}\)W trójkącie prostokątnym o bokach \(6, 8, 10\), tangens najmniejszego kąta jest równy A.\(\frac{3}{4} \) B.\(1\frac{1}{3} \) C.\(\frac{3}{5} \) D.\(\frac{4}{5} \) AW trójkącie prostokątnym najdłuższy bok ma długość \(25\), a najkrótszy \(7\). Tangens najmniejszego kąta tego trójkąta jest równy: A.\(\frac{7}{24} \) B.\(\frac{24}{7} \) C.\(\frac{7}{25} \) D.\(\frac{24}{25} \) AJeżeli \( \alpha \) jest kątem ostrym oraz \( \operatorname{tg}{\alpha }=\frac{2}{5} \), to wartość wyrażenia \( \frac{3\cos{\alpha }-2\sin{\alpha }}{\sin{\alpha }-5\cos{\alpha }} \) jest równa A.\(-\frac{11}{23} \) B.\(\frac{24}{5} \) C.\(-\frac{23}{11} \) D.\(\frac{5}{24} \) AKąt \( \alpha \) jest ostry i spełniona jest równość \( 3\operatorname{tg}\alpha =2 \). Wtedy wartość wyrażenia \( \sin \alpha+\cos \alpha \) jest równa A.\(1 \) B.\(\frac{5\sqrt{13}}{26} \) C.\(\frac{5\sqrt{13}}{13} \) D.\(\sqrt{5} \) CKąt \( \alpha \) jest ostry oraz \( \frac{4}{\sin^2\!{\alpha }}+\frac{4}{\cos^2\!{\alpha }}=25 \). Oblicz wartość wyrażenia \( \sin{\alpha }\cdot \cos{\alpha } \). \(\frac{2}{5}\)Dla każdego kąta ostrego \(\alpha \) wyrażenie \(\sin^{2} \alpha +\sin^{2} \alpha \cdot \cos^{2}\alpha + \cos^{4}\alpha\) jest równe A.\( 2\sin^{2} \alpha \) B.\( 2\cos^{2}\alpha \) C.\( 1 \) D.\( 2 \) CKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{3}\). Wartość wyrażenia \(1+\operatorname{tg} \alpha \cdot \cos \alpha \) jest równa A.\( \frac{4}{3} \) B.\( \frac{11}{9} \) C.\( \frac{17}{9} \) D.\( \frac{11}{3} \) AKosinus kąta ostrego rombu jest równy \(\frac{\sqrt{3}}{2}\), bok rombu ma długość \(3\). Pole tego rombu jest równe A.\( \frac{9}{2} \) B.\( \frac{9\sqrt{3}}{4} \) C.\( \frac{9\sqrt{3}}{2} \) D.\( 6 \) APrzyprostokątne w trójkącie prostokątnym mają długości \(1\) oraz \(\sqrt{3}\). Najmniejszy kąt w tym trójkącie ma miarę A.\( 60^\circ \) B.\( 30^\circ \) C.\( 45^\circ \) D.\( 15^\circ \) BKąt \(\alpha\) jest ostry i \(\cos\alpha = \frac{\sqrt{7}}{4}\). Oblicz wartość wyrażenia \(2+\sin^3\!\alpha +\sin\alpha \cdot \cos^2\!\alpha\).\(2\frac{3}{4}\)Na płaszczyźnie dane są punkty \( A=( \sqrt{2}, \sqrt{6} ) \text{, }\ B=(0, 0) \text{ i }\ C=(\sqrt{2}, 0)\) . Kąt \( BAC \) jest równy A.\(30^\circ \) B.\(45^\circ \) C.\(60^\circ \) D.\(75^\circ \) ALiczba \( \sin 150^\circ \) jest równa liczbie A.\( \cos 60^\circ \) B.\( \cos 120^\circ \) C.\( \operatorname{tg} 120^\circ \) D.\( \operatorname{tg} 60^\circ \) AJeżeli kąt \(\alpha \) jest ostry i \(\operatorname{tg} \alpha =\frac{3}{4}\), to \(\frac{2-\cos \alpha }{2+\cos \alpha }\) równa się A.\( -1 \) B.\( -\frac{1}{3} \) C.\( \frac{3}{7} \) D.\( \frac{84}{25} \) CW trójkącie, przedstawionym na rysunku poniżej, sinus kąta ostrego \(\alpha \) jest równy A.\( \frac{1}{5} \) B.\( \frac{\sqrt{6}}{12} \) C.\( \frac{5}{24} \) D.\( \frac{2\sqrt{6}}{5} \) DW układzie współrzędnych zaznaczono kąt \(\alpha \). Jedno z ramion kąta \(\alpha \) przechodzi przez punkt \(P=(-4,3)\). Wtedy: A.\( \cos \alpha = \frac{4}{5} \) B.\( \cos \alpha = -\frac{4}{5} \) C.\( \cos \alpha = -\frac{4}{3} \) D.\( \cos \alpha = -\frac{3}{4} \) BJeżeli \(0^\circ \lt \alpha \lt 90^\circ \) oraz \(\operatorname{tg} \alpha =2\sin \alpha \), to A.\( \cos \alpha =\frac{\sqrt{2}}{2} \) B.\( \cos \alpha =\frac{1}{2} \) C.\( \cos \alpha =1 \) D.\( \cos \alpha =\frac{\sqrt{3}}{2} \) BDrabinę o długości \(4\) metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości \(1{,}30\) m od tego muru (zobacz rysunek). Kąt \(\alpha \), pod jakim ustawiono drabinę, spełnia warunek A.\( 0^\circ \lt \alpha \lt 30^\circ \) B.\( 30^\circ \lt \alpha \lt 45^\circ \) C.\( 45^\circ \lt \alpha \lt 60^\circ \) D.\( 60^\circ \lt \alpha \lt 90^\circ \) DKąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{2}{5}\). Wówczas \(\cos \alpha \) jest równy A.\( \frac{5}{2} \) B.\( \frac{\sqrt{21}}{4} \) C.\( \frac{3}{5} \) D.\( \frac{\sqrt{21}}{5} \) DRównanie \(2\sin x+3\cos x=6\) w przedziale \((0,2\pi )\) ma rozwiązań rzeczywistych. dokładnie jedno rozwiązanie rzeczywiste. dokładnie dwa rozwiązania rzeczywiste. więcej niż dwa rozwiązania rzeczywiste. ASinus kąta ostrego \(\alpha \) jest równy \(\frac{3}{4}\). Wówczas A.\( \cos \alpha =\frac{1}{4} \) B.\( \cos \alpha =\frac{\sqrt{7}}{4} \) C.\( \cos \alpha =\frac{7}{16} \) D.\( \cos \alpha =\frac{\sqrt{13}}{16} \) BW trójkącie prostokątnym o długościach przyprostokątnych \(2\) i \(5\) cosinus większego z kątów ostrych jest równy A.\( \frac{5}{2} \) B.\( \frac{2}{5} \) C.\( \frac{2}{\sqrt{29}} \) D.\( \frac{5}{\sqrt{29}} \) CKąt \(\alpha \) jest ostry i spełnia równość \(\operatorname{tg} \alpha +\frac{1}{\operatorname{tg} \alpha }=\frac{7}{2}\). Oblicz wartość wyrażenia \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{7}\)Kąt \(\alpha \) jest ostry oraz \(3\sin \alpha -\sqrt{3}\cos \alpha =0\). Wtedy A.\( \operatorname{tg} \alpha =\frac{1}{3} \) B.\( \operatorname{tg} \alpha =3 \) C.\( \operatorname{tg} \alpha =\sqrt{3} \) D.\( \operatorname{tg} \alpha =\frac{\sqrt{3}}{3} \) DKąt \(\alpha \in (0^\circ , 180^\circ )\) oraz wiadomo, że \(\sin \alpha \cdot \cos \alpha =-\frac{3}{8}\). Wartość wyrażenia \((\cos \alpha -\sin \alpha )^2+2\) jest równa A.\( \frac{15}{4} \) B.\( \frac{9}{4} \) C.\( \frac{27}{8} \) D.\( \frac{21}{8} \) Wartość wyrażenia \(2\sin^{2} 18^\circ +\sin^{2} 72^\circ +\cos^{2} 18^\circ \) jest równa A.\( 0 \) B.\( 1 \) C.\( 2 \) D.\( 4 \)
Dla kąta ostrego $\alpha$, $\begin{gather*}\sin\alpha=\frac{\sqrt{3}}{2}\end{gather*}$.Wartość wyrażenia $\begin{gather*}3-2\cos^2\alpha\end{gather*}$ jest równaA. $\frac{\sqrt{3}}{2}$B. $-\frac{3}{2}$ C. $-\frac{5}{2}$D. $\frac{5}{2}$ Dla kąta ostrego $\alpha$, $\sin\alpha=\frac{1}{2}.$Wartość wyrażenia $\cos^2\alpha-2$ jest równaA. $-\frac{5}{4}$B. $-\frac{3}{2}$ C. $-\frac{5}{2}$D. $\frac{5}{4}$ Kąt $\alpha$ jest ostry i $\sin \alpha=\frac{\sqrt{3}}{2}.$ Oblicz wartość wyrażenia $2\sin^2\alpha-4\cos^2\alpha$. Kąt $\alpha$ jest ostry i $\sin \alpha=\frac{\sqrt{2}}{2}.$ Oblicz wartość wyrażenia $2\sin^2\alpha-3\cos^2\alpha$. Kąt $\alpha$ jest ostry i $\sin \alpha=\frac{1}{2}.$ Oblicz wartość wyrażenia $\sin^2\alpha-2\cos^2\alpha$. Kąt $\alpha$ jest ostry i $\cos \alpha=\frac{\sqrt{3}}{2}.$ Oblicz wartość wyrażenia $2\cos^2\alpha-3\sin^2\alpha$. Kąt $\alpha$ jest ostry i $\cos \alpha=\frac{\sqrt{2}}{2}.$ Oblicz wartość wyrażenia $\cos^2\alpha-\sin^2\alpha$.
zadania z trygonometrii matura podstawowa